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Overview

* Will talk about prognostic salinity modeling in
global climate models

* Developed prognostic salinity (‘mushy layer’
physics) for CICE in LANL post-doc 2010-2013



K. M. Golden et al. (2007)

Worster (1999)

Sea ice formation

Freezing interface becomes
morphologically unstable
during growth

Brine is trapped between
dendritic crystals

Resulting structure is termed a
“mushy layer”

Pore structure changes
dynamically according to
changes in temperature and
brine pocket salinity

Brine actively flows through
connected brine pockets

Mushy Layer
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 Growing planar ice rejects all salt ahead of it

* Build up of salt depresses melting
temperature ahead of the growing front

e Supercooled region develops —
“constitutionally supercooled”



Morphological instability

* Possibility of morphological instability (Mullins
& Sekerka 1964)

— Surface tension stabilizes surface
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NOAA

* Seaice is home to a wide variety of organisms — bacteria,
diatoms

e Need to be able to simulate flow of brine around sea ice to
model flow of nutrients that supports this life

* Biology affects radiation absorption through albedo

« Salinity profile also effects physical properties — ice strength,
melt rate



Lower BC for mushy layer during
growth

No clear agreement on what this should be
— Depends on particular situation

Popular is the “condition of marginal equilibrium”

— Mush grows at a speed that just removes constitutional
supercooling (aﬁ_ga of the gr Wing interface
0z

z=h+ Oz

— This often leads to ®=0 at the interface, as is usually the
case with sea ice

Some people just use @=0 at the interface
@=0 at the interface is annoying — can’t directly use




Convection and Gravity Drainage

* Growing ice has high salinity brine overlaying low salinity
brine — higher density brine over lower density brine

e Convection overturning of brine in ice matrix

* Brine motion results in change in ice matrix structure —
development of chimneys

* Resulting brine loss from ice responsible for desalination of
ice
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Experimental Results of Convection

Notz (2005)

Desalination experiments of Dirk Notz (2005) measured bulk
salinity, temperature and solid fraction during ice growth

40x20x20cm Perspex tank with custom instrumentation

Impedance measured between Platinum wires, temperature
by thermisters.

Solid fraction determined from wires. Bulk salinity inferred
from temperature and solid fraction using Liquidus curve.



Fieldwork (Notz 2008)
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Experimental observation of drainage
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Desalination Rate (PSU/hour)

Fieldwork observation of drainage

4 T . T . T . 05

0

-05

-1 F

-15

Desalination Rate (PSU/hour)

-8 | 2L

_10 1 1 1 1 L 1
1e-14 1e-13 1e-12 1e-11 1e-10 1e-09 1e-08 -25

Permeability (m?) 0.01 0.1 | 1 10
Rayleigh Number

* Divide first fieldwork period data into initial and later drainage
phase by permeability

 Examine desalination rate for later drainage versus mush
Rayleigh number

* No evidence of cutoff in desalination with drainage rate
* No critical Rayleigh number



Drainage parameterizations

Have two parameterizations — one for each phase

Model initial rapid phase with explicit flow calculation
assuming upflow in mush and downflow in narrow pipe

Modify by critical Rayleigh number

Use flow rate to advect brine upwards through the mush,
resulting in desalination

Model later desalination with source term proportional to
porosity and brine density difference with the ocean
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Results - fieldwork
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lcepack vertical thermodynamics

* Solve mushy layer equations
— Brine salinity given by liquidus relation
— Enthalpy and liquid fraction:
q= ¢qor+(1-¢)gq; S

b=

= ¢pyCwT+(1=¢)(p;iciT—pjLo) Sor
— Enthalpy and Salinity prognostic equations:
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— Slow salinity relaxation
0S(z)
ot
— Basil ice growth (¢,=0.85)

——(S(2)=S.).

slow

(1 —ql)o)LoAh: (Fcb —Fbot)At



Global Sims |
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For Arctic model results regions are: (solid blue) Arctic Ocean, (green dots) peripheral seas, (red dashes) outer Arctic. For Arctic
observations regions are: (blue diamonds) Arctic Ocean and Fram Strait, (green triangles) peripheral seas, (red squares) outer Arctic. For
Antarctic model results regions are: (solid black) global Southern Ocean, (blue dashes) West Pacific sector, (red dots) Weddell Sea. For
Antarctic observations regions are: (blue diamonds) West Pacific and Indian sectors, (red squares) Weddell Sea, (green triangles) Ross,
Amundsen and Bellingshausen seas.



Global Sims Il
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